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SUMMARY

This paper presents a numerical method for free surface �ows that couples the incompressible Navier–
Stokes equations with the level set method in the �nite element framework. The implicit characteristic-
Galerkin approximation together with the fractional four-step algorithm is employed to discretize the
governing equations. The schemes for solving the level set evolution and reinitialization equations are
veri�ed with several benchmark cases, including stationary circle, rotation of a slotted disk and stretching
of a circular �uid element. The results are compared with those calculated from the level set �nite
volume method of Yue et al. (Int. J. Numer. Methods Fluids 2003; 42:853–884), which employed
the third-order essentially non-oscillatory (ENO) schemes for advection of the level set function in
a generalized curvilinear coordinate system. The comparison indicates that the characteristic Galerkin
approximation of the level set equations yields more accurate solutions. The second-order accuracy
of the Navier–Stokes solver is con�rmed by simulation of decay vortex. The coupled system of the
Navier–Stokes and level set equations then is validated by solitary wave and broken dam problems. The
simulation results are in excellent agreement with experimental data. Copyright ? 2005 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Modelling unsteady free surface �ows has been a challenging task because of the mov-
ing interface which is known only at the initial time and has to be determined as part of
the solution. A variety of numerical methods have been developed for free surface prob-
lems based upon either the moving-grid method or the �xed-grid method. The moving-grid
method belongs to a Lagrange-type method which treats the free surface as the boundary of a
moving surface-�tted grid. This method applies to either structured or unstructured grids, in-
cluding strictly Lagrangian method, free Lagrangian method, and mixed Lagrangian–Eulerian
method, among others [1]. In the moving-grid approach the free surface remains sharp and
is computed precisely. The strictly Lagrangian method is restricted to the well-de�ned sim-
ple surface topology and small surface steepness, such as small amplitude water waves and
slightly deformed air bubbles. To mitigate the di�culties in grid distortion, the free Lagrangian
method [2] allows grids to switch their neighbours and reconnect with them. This method has
been applied in droplet oscillation and droplet breakup in a shear layer. With highly distorted
grids associated with a large deformation of the free surface, remeshing becomes inevitable.
The remeshing-based method is referred to as arbitrary Lagrangian–Eulerian (ALE) method.
In the ALE method, the �ow information in the new grid is transferred from the old one.
Since Hirt et al. [3] introduced the ALE method, it has been succeedingly ameliorated and
modi�ed by a number of researchers in many aspects, making it an attractive choice.
Several researchers applied moving-grid approaches to the free surface �ow problems with

the �nite element method. G�uler et al. [4] suggested algorithms based on space–time �nite ele-
ment formulation and applied their model to two-dimensional (2D) and three-dimensional (3D)
free surface problems. In their approach free surface height was determined by
kinematic free surface boundary condition, which also required streamline upwind=Petrov–
Galerkin (SUPG) stabilized formulation. Sung et al. [5] proposed an ALE �nite element
approach also based on SUPG stabilization and applied it to solitary wave propagation and
run-up on a vertical wall.
On the other hand, the �xed-grid method can be classi�ed into the surface-tracking method

and the surface-capturing method. Both methods employ a �xed stationary grid covering the
liquid and gas regions. In the surface-tracking method, overlapping interface grid cells or pre-
de�ned markers explicitly identify and track the free surface. The cells or markers in each
cell are advected in the velocity �eld calculated by interpolation (with appropriate weights)
from the velocities in the adjacent grid points. The marker and cell (MAC) method of Harlow
and Welch [6] belongs to the surface tracking method. In the surface-capturing method, there
is no explicit ‘�ag’ to identify the free surface; the free surface is implicitly captured by a
contour of certain scalar functions, such as density, phase �eld function, and zero level set.
The volume of �uid (VOF) method has enjoyed considerable popularity since its introduc-

tion by Hirt and Nichols [7] as a generalization and improvement of MAC. In this method,
free surface is represented on �xed grids using a fractional �uid volume in a cell (control
volume). The �uid volume fraction then is advected by the local velocity and reconstructed in
terms of value of the volume fraction itself. The reconstruction procedure however is mainly
a geometric operation in which non-physical interface breakup may occur and �uid parcels
may be unrealistically merged into the interface. Recently, Kim and Lee [8] applied the VOF
method to two-phase air–water free surface problem in the framework of SUPG �nite element
method.
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The popular surface-capturing method is the level set method (LSM) devised by Osher and
Sethian [9]. LSM has been applied widely in a variety of �elds, such as incompressible �uid
mechanics, combustion, and solidi�cation. In the LSM, a smooth level set function �(x; t),
de�ned as a signed distance function to the interface, represents the interface with a line (2D)
or a surface (3D) at the zero level set �(x; t)=0 [10]. Then, the level sets are advected by
the local velocity �eld and redistanced (reinitialized) as a signed distance to the interface.
While increase of grid resolution is needed at the interface in other numerical approaches,
the interface in LSM can be captured at any time by locating the zero level set. By taking
advantage of the smoothness of the level set function, LSM handles topological merging,
breaking and even self-intersecting of interfaces in a natural way. Basic information on the
interface, such as location, orientation and curvature, can be obtained with ease by examining
the zero level set, which provides convenience of estimating surface tension. As in other
numerical methods, surface tension can be either di�used over the interface as a �-function-
like volume force in the momentum equations [11] or exactly treated as a jump condition
incorporated in the pressure-Poisson equation [12]. Another advantage of LSM is that it can be
extended from 2D to 3D in a straightforward manner, which is not in many other algorithms.
Some researchers have applied LSM to incompressible �ow in the �nite element framework.

Quecedo and Pastor [13] simulated two-phase incompressible �ow based on the characteris-
tic Galerkin method [14]. Due to the explicit nature of their scheme, the di�erent optimal
time steps for momentum equations and level set equations must be determined. Chessa and
Belytschko [15] applied the extended �nite element method (XFEM) to 2D two-phase immis-
cible �ow problems. The discontinuity in the derivative of the velocity �eld is enriched by an
extended shape function whose gradient is discontinuous across the immiscible �uid interface.
Since the discontinuities at the interface are tracked and enriched throughout whole calcula-
tion, the XFEM approach [15] can be classi�ed as surface-tracking method. Both approaches
[13, 15] employed Chorin’s fractional-step algorithm [16] in their explicit discretization of
Navier–Stokes equations in characteristic Galerkin formulation, which provided appropriate
stabilization.
The objective of the paper is to present a new numerical method that couples the incom-

pressible Navier–Stokes equations with LSM in the �nite element framework for study of
free surface �ows. The method has two new features. One feature is that the implicit charac-
teristic Galerkin scheme is employed to stabilize undesirable oscillations usually observed in
convection-dominated problems without resorting to the ENO schemes. It is noteworthy that
the ENO schemes have been employed in the �nite volume approach for level set reinitializa-
tion, which can hinder the e�ciency of the scheme due to use of ‘if’ conditional statements.
The second feature is that the governing di�erential equations are numerically integrated with
a fractional four-step method, which guarantees second-order discretization accuracy without
special treatment on the boundary condition for the intermediate velocity, unlike other frac-
tional three-step methods. The level set equations of evolution and reinitialization are validated
with benchmark cases, including a stationary circle, a rotating slotted disk and stretching of a
circular �uid. We then apply and validate the numerical code in several benchmark problems,
e.g. a travelling solitary wave and 2D=3D broken dams without and with a square column. The
case of the 3D broken dam over a square column is to demonstrate the geometric �exibility
of the current method.
This paper is organized as follows. Section 2 describes the mathematical model of

the two-phase �ow system, the coupling of Navier–Stokes equations with LSM, and the
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reinitialization procedure for the level set function. Section 3 details the characteristic Galerkin
implementation of level set evolution and reinitialization equations in a weighted integral state-
ment. Section 4 presents the time integration of the incompressible Navier–Stokes equations.
Section 5 �rst examines vortex decay to evaluate the order of accuracy of the Navier–Stokes
solver. Then the benchmark cases of Zalesak’s disk and a �uid element stretched in a swirling
deformation velocity �eld are simulated for validation of the level set schemes. Finally, the
coupled system is applied to the problems of free surface �ows.

2. MATHEMATICAL MODEL

2.1. Level set representation of two-phase �ows

In the level set method, the free surface is identi�ed as a zero level set, i.e. �(x; t)=0. The
level set function is advected by solving the level set evolution equation

@�
@t
+ u · ∇�=0 (1)

where u is the �uid velocity. The free surface motion is implicitly represented by the propa-
gation of the zero level set in the equation. With the level set function available, the approach
of a volume force by Brackbill et al. [17] and Unverdi and Tryggvason [18] is employed to
update the �uid properties, such as density and viscosity, and distribute the surface tension
smoothly over a thin transition zone.
The level set � is initialized as a signed distance function, which is zero at the free surface,

negative in the air region, and positive in the water region. To have a smooth transition
of �uid properties from one �uid to the other, the interface region is assumed to be of
�nite thickness, which satis�es mathematically |�|6”, where ” is typically one or two grid
distances. Thus, the thickness of interface is 2”. Through the smoothed Heaviside function
H (�) [11]

H (�)=

⎧⎪⎪⎪⎪⎨
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0 if �¡ − ”

1
2

[
1 +

�
”
+
1
�
sin

(
��
”

)]
if |�|6”

1 if �¿”

(2)

the density and kinematic viscosity are computed by

�(�) = �g + (�l − �g)H (�)

�(�) = �g + (�l − �g)H (�)
(3)

where the subscripts g and l denote gas and liquid, respectively.

2.2. Coupling of Navier–Stokes equations with level set function

To couple with the LSM discussed in the previous section, the incompressible Navier–
Stokes equations in the Cartesian coordinate system are modi�ed with variable density and
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viscosity

@ui

@xi
=0 (4)

@ui

@t
+ uj

@ui

@xj
=−1

�
@p
@xi

+ gi +
@
@xj

(
�
@ui

@xj

)
(5)

where ui is the velocity component and gi is the gravitational acceleration in the i-direction.
Here the surface tension force can be modelled as in Reference [19] and is omitted for
simplicity.

2.3. Reinitialization of level set function

The numerical solution of the level set evolution equation (1) does not guarantee that the
level set � remains a signed distance function. A reinitialization (or redistancing) procedure
for � must be carried out to ensure |∇�|=1. The approach of Sussman et al. [11] that solves
the following nonlinear partial di�erential equation to steady state (from �=0 to �= �steady)
is employed

@ 
@�
+ s( 0)(|∇ | − 1) = 0 (6)

 0(x; �=0)=�(x; t) (7)

where  (x; �) shares the same zero level set with �(x; t), � is pseudo time, and s( 0) is the
smoothed sign function de�ned as [20]

s( 0)=
 0√

 0
2 + (|∇ 0| �)2

(8)

where � is usually one grid length. The initial condition to Equation (6) is Equation (7). At
steady state, the transient term of Equation (6) is gone, the redistanced function  then would
satisfy |∇ |=1. The level set function, �, is subsequently recovered by

�(x; t)=  (x; �steady) (9)

Equation (6) can be recast as a nonlinear hyperbolic equation.

@ 
@�
+ c · ∇ = s( 0) (10)

where

c= s( 0)
∇ 
|∇ | (11)

Since c is the characteristic velocity pointing outward from the free surface, reinitialization
always starts from the zero level set surface, i.e. the free surface. The accurate � is only
needed within the transition (interface) zone. Therefore, ”=�� iteration steps would be enough
for practical application of reinitialization. The solution procedure is summarized in Figure 1.
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End

Solve the level set evolution equation

Initialize the level set function,
flow velocity and fluid properties

Solve the momentum equation
and the pressure-Poisson equation

Reinitialize the level set function

Update density and viscosity

t = t end ?
NO

YES

∆
t=

t+
t

Start

Figure 1. Flow chart of level set calculation.

3. CHARACTERISTIC GALERKIN APPROXIMATION

Since standard Galerkin discretization leads to the central di�erence approximation of di�er-
ential operators, Galerkin approximations to the convection equations usually su�er instability
problems. Among various techniques to improve stability, streamline upwind Petrov–Galerkin,
Taylor–Galerkin [21] and characteristic Galerkin [14] schemes have gained some popularity.
The characteristic Galerkin scheme discretizes the original equation in time along the charac-
teristic before applying the spatial discretization. It can be implemented in the framework of
standard Galerkin �nite element formulation.
The implicit characteristic Galerkin approximation of Equation (1) begins with temporal

discretization of � along the characteristic and, then applies local Taylor series expansion to
locate the origin of the characteristic at time step n+ 1

2 [22]:

�n+(1=2) − �n−(1=2) =−�tun
i
@�n−(1=2)

@xi

+
�t2

4

[
un
i
@
@xi

(
un
j
@�n−(1=2)

@xj

)
+ un

i
@
@xi

(
un
j
@�n+(1=2)

@xj

)]
+O(�t3)

(12)

Suppose that the domain � is discretized into an appropriate collection of �nite elements.
The Galerkin approximation is to �nd an approximate solution of the following form in a
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�nite dimensional subspace Hh of the Sobolev space on the spatial domain �:

�=NT� (13)

where NT = {N 1; N 2; : : : ; N ne} is a (1× ne) vector of linear interpolation functions of the ele-
ment �e, the superscript ( · )T denotes the transpose operation, and ne is the number of nodal
points in an element. � represents a (ne × 1) vector of unknown level set functions.
Application of the Galerkin approximation to Equation (12) yields(∫

�e
NNT d�

)
(�n+(1=2) −�n−(1=2))

=−�t
∫
�e
Nun

i
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4
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D

(14)

Integrating the second term D on the right-hand side (RHS) of Equation (14) by parts,
applying the divergence theorem of Gauss, and enforcing the continuity equation yield

D= −
∫
�e

un
i
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(15)

where �e denotes the surface of elements and ni is the unit vector outward normal to �e.
Equation (14) then can be recast as(∫
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The terms of surface integrals cancel out in the interior of the domain �. For the no-slip wall
and at the inlet and outlet with zero gradient of �, the surface integral may be omitted.
For the reinitialization step, let c= ci and s( 0)= s0 in Equation (10) and the distance

function  is approximated by

 =NT� (17)

where � represents a set of unknown distance functions.
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Implicit characteristic Galerkin approximation of Equation (10) yields(∫
�e
NNT d�
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where m is the time index used in the reinitialization step. Use of the relationships of
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(21)

Since @cmi =@xi and @cm+1i =@xi are the second-order spatial derivatives of the distance function  ,
the term A in Equation (21) can be omitted if linear interpolation functions are used.

4. NUMERICAL INTEGRATION OF NAVIER–STOKES EQUATIONS

The most prominent strength of the �nite element method is its geometric �exibility. In this
study, the implicit characteristic Galerkin �nite element method is employed for the time
integration of incompressible Navier–Stokes equations.

4.1. Fractional four-step method

The fractional four-step method by Choi et al. [23] is applied to solve the continuity and
momentum equations, Equations (4) and (5). The four-step method does not require any
special treatment on the boundary conditions of the intermediate velocity with preserving
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second-order accuracy. The continuity equation is enforced by solving a pressure-Poisson
equation (24). The implicit characteristic Galerkin approximation of these equations reads:

1. Momentum Predictor

ûi − un
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2. First Corrector
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3. Pressure-Poisson Equation

@
@xi

(
1

�n+(1=2)

@pn+(1=2)

@xi

)
=
1
�t

@u∗
i

@xi
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4. Second Corrector

un+1
i − u∗

i

�t
= − 1

�n+(1=2)

@pn+(1=2)

@xi
(25)

where the implicit nonlinear convection stabilizing term on the RHS of Equation (22) is
treated by Picard iterative method.

4.2. Finite element formulation for pressure-Poisson equation

The pressure-Poisson equation is solved using the procedure of Choi et al. [23] for mass con-
servation. Because the current approach adopts an equal-order velocity formulation, the order
of interpolation functions for the continuity equation is the same as those of the momentum
equations. Consider the approximation of pressure

p=NTP (26)

U and P are (ne × 1) vectors of rede�ned nodal particle distribution functions. The standard
Galerkin �nite approximation employs interpolation functions as weight function, thus resulting
in the weak form of the continuity equation (4)∫

�e
N

@un+1
i

@xi
d�=0 (27)

Applying the divergence theorem, Equation (27) can be written as∫
�e

@N
@xi

un+1
i d�=

∫
�e
Nun+1

i ni d� (28)
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Substitution of Equation (25) for un+1
i yields the pressure-Poisson equation

(
�t

∫
�e

@N
@xi
1
�
@NT

@xi
d�

)
P=

∫
�e

@N
@xi

u∗
i d�−

∫
�e
Nun+1

i ni d� (29)

As pointed out by Choi et al. [23], the unknown velocity un+1
i at the boundary nodes on the

RHS of Equation (29) can be replaced by û without violating second-order accuracy. This
can be easily veri�ed by Equations (23) and (25)

ûi = un+1
i +

�t
�n+(1=2)

@(pn+(1=2) − pn−(1=2))
@xi

= un+1
i +O(�t2) (30)

The resulting system of linear equations are solved by the conjugate gradient method. Since
the characteristic Galerkin scheme has an accuracy of order two, it will be veri�ed later in
Section 5.1.1.

5. COMPUTATIONAL RESULTS

In this section, several benchmark problems are simulated for code veri�cation and validation.
Because the coupled system consists of Navier–Stokes solver and level-set method, each of
them shall be evaluated separately prior to assessing the coupled system. The single-phase
decaying vortex problem is �rst considered in Section 5.1. The order of accuracy of the
scheme is veri�ed by comparison of numerical and analytical solutions. In Section 5.2 the
level-set evolution and reinitialization solutions are examined. In particular, they are compared
with those obtained from the level-set �nite-volume method of Yue et al. [19], who compared
di�erent numerical schemes for advection of the level set function in a generalized curvilinear
format, including the third-order quadratic upwind interpolation for convective kinematics
(QUICK) scheme, and the second- and third-order ENO schemes. In Section 5.3 the coupled
two-phase system is validated by solitary wave and broken dam problems without and with
a square column.

5.1. Accuracy and discretization errors

5.1.1. Vortex decay. The 2D unsteady vortex decay problem [24, 25] is examined to calculate
the discretization errors and estimate the order of accuracy of the scheme for veri�cation. The
rate of vortex decay is dependent on the wavenumber and the Reynolds number of the �ow.
The analytical solutions of the problem read

u(x; y; t) =− cos(kx) sin(ky) exp(−2k2t=Re) (31)

v(x; y; t) = sin(kx) cos(ky) exp(−2k2t=Re) (32)

p(x; y; t) =− 1
4 [cos(2kx) + cos(2ky)] exp(−4k2t=Re) (33)
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dx/dxref

ε u,
ε v

1 2 3 4 5 6 7 8 910

10

10

10-4

-5

-6

u

v

mesh : 32×32

mesh : 256×256

mesh : 128×128

mesh : 64×64

1

2

Figure 2. Average error as a function of mesh re�nement.

where 06(x; y)6�, t is time, k is the characteristic wavenumber of the �ow �eld, and Re
is the Reynolds number. Discretization errors are obtained by comparing numerical solutions
against the above analytical ones. The order of accuracy of the scheme is estimated using
the solutions calculated on four systematically re�ned rectangular meshes: 32× 32, 64× 64,
128× 128 and 256× 256, with k=1 and Re=1. It is noteworthy that time steps shall be
altered accordingly with meshes to maintain consistent Courant number (Cr= umax�t=�x,
where �t is the time step and �x is the grid spacing) as in Reference [24] because of the
transient nature of the problem. The initial condition is obtained from Equations (31)–(33)
at t=0. Time-dependent essential boundary conditions for two velocity components u and
v are imposed at every time step based upon Equations (31)–(33). Figure 2 displays the
relationship between grid sizes and average errors calculated at t=0:15 s. The slope of the
curve con�rms that the current scheme is of second-order accuracy.

5.2. Reinitialization and evolution of level set function

5.2.1. A stationary circle. Reinitialization is a key procedure in LSM. To verify the im-
plementation of the level set schemes presented in Section 3, the reinitialization procedure is
applied to a stationary circle. The level set function is initially assigned with a value of +0:15
outside the circle and a value of −0:15 inside the circle. As shown in Figure 3 two types of
meshes with a domain size of 100× 100 are considered: a uniform mesh and a hybrid mesh.
For the hybrid mesh a half of the domain comprises quadrilateral elements, whereas the other
half contains triangular elements. The centre of the circle coincides with the centre of the
square domain and the radius of the circle is set to 15. Figure 4 exhibits the contours of
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Figure 3. Meshes used for reinitialization test: (a) uniform mesh; and (b) hybrid mesh.
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Figure 4. Evolution of level set surface �=0 on: (a) uniform mesh; and (b) hybrid mesh.
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�=0 at ten di�erent time units on the two meshes. � is well redistanced as a signed distance
function with increasing time (|∇�|=1) regardless of mesh type.

5.2.2. Rotation of a slotted disk. Zalesak’s problem of a rotating slotted disk [26] has
become a benchmark case for testing an advection scheme, in which a slotted solid disk
rotates around a centre with a constant angular velocity. We use this problem to measure the
di�usive error of the present LSM. Here the slotted disk has a radius of 15 and a slot width
of 6. It is initially located at (50; 75) in the domain of size 100× 100. The angular velocity �
is set to 0:01 so that the disk can return to its original position at every 628 time units. The
di�usive errors can be evaluated by checking the degree of distortion of the disk boundary.
For comparison, we employ three meshes: a uniform mesh of 100× 100 square elements, a
re�ned uniform mesh of 200× 200 square elements and a triangular mesh of 11 421 nodal
points and 22 440 elements. The time step �t=0:5 is used for the re�ned 200× 200 uniform
mesh and �t=1:0 for the other two meshes. Because this is a problem of pure advection by
the constant angular velocity, a good evolution scheme is expected to adequately preserve the
disk geometry without reinitialization.
Figure 5 displays the rotation of a slotted disk at t=0; 157; 314; 471 and 628 s on the three

meshes. The half-thickness of the interface is set as ”=2�x. Table I shows the area errors
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t = 0 s

t = 157 s

t = 314 s

t = 471 s

t = 628 s

Figure 5. Counter-clockwise rotation of a slotted disk. Dotted line, initial shape; solid
lines, uniform 200× 200 mesh; dash-dot lines, uniform 100× 100 mesh; dash-dot-dot

lines, 11 421-node triangular mesh.
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Table I. Area error during the rotation of Zalesak’s slotted disk.

Mesh t=157 s t=314 s t=471 s t=628 s

Uniform mesh (100× 100) −0.0100% −0.0034% 0.0033% 0.0101%
Uniform mesh (200× 200) −0.0030% −0.0014% −0.0010% −0.0015%
Triangular mesh
(11 421 points, 22 440 elements) −0.0025% 0.0008% 0.0073% 0.0133%
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Figure 6. (a) A closed-up view of a slotted disk after a rotation on three di�erent meshes (this study);
and (b) comparison with the solution of Yue et al. [19] using a 3rd order ENO scheme.

during the revolution. The area error is calculated by

�A=
A(t)− A(0)

A(0)
× 100(%) (34)

where A(t)=
∫
�H (�) d� is the total area of �uid at time t, A0 is the initial area at t=0.

Figure 6 is a close-up view at t=628 s of the present study and Yue et al. [19], who also
tested this problem with the �nite volume level set method with a third-order ENO scheme.
The aberrations from the original shape in this study are all within one mesh size even though
the corners do not remain as sharp as the original ones. The 200× 200 �ne mesh preserves
the original shape much better than two other meshes as expected. The qualitative comparison
shows that the performance with a 100× 100 mesh is much better than that of Yue et al.’s
100× 100 mesh and comparable to Yue et al.’s 200× 200 mesh.

5.2.3. Stretching of a circular �uid. A circular �uid is placed in a swirling deformation �ow
�eld within a unit square described by

’=
1
�
sin2(�x) sin2(�y) (35)

where ’ is the stream function. The �uid is stretched into a thin �lament by the shearing
velocity �eld. This case provides a challenging test for both surface-tracking and surface-
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Figure 7. Stretching of a circular �uid element in a swirling deformation �ow at t=: (a) 0; (b) 100;
(c) 200; and (d) 300. Solid lines, uniform 200× 200 mesh; dashed line, uniform 100× 100 mesh;

dash-dot lines, triangular mesh (11 421 points, 22 440 elements).

capturing methods. Rider and Kothe [27] and Rudman [28] employed this problem to evaluate
their VOF scheme. The same mesh and domain size as Zalesak’s problem are adopted here.
The circle is initially centred at (50; 75) with a radius of 15. The solenoidal velocity �eld
becomes

u= − sin2
( �x
100

)
sin

(�y
50

)
; v= sin2

( �y
100

)
sin

(�x
50

)
(36)

Note that a time step of 0.5 is used for the two coarse meshes, and 0.25 for the mesh of
200× 200 to maintain a consistent Cr number.
Figure 7 shows the stretching process of the circular �uid element at t=0; 100; 200 and

300s on the two rectangular meshes and triangular mesh. The circular �uid element is torn into
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Figure 8. A close-up view of stretched tails at t=300 s on: (a) uniform 100× 100
mesh; (b) triangular mesh (11 421 points, 22 440 elements); (c) uniform 200× 200

mesh (this study); and (d) uniform 200× 200 mesh [19].

a �lament by the shearing vortex, and becomes thinner as time proceeds. At t=0 and 100 s
the preservation of the �uid element on the three meshes seems indistinguishable. However
the tail regions of the �uid �lament become di�erent at t=200 and 300 s. Figure 8 further
displays the close-up view of the stretched tails at t=300 s on each mesh. The results of
100× 100 and triangular meshes at t=300 s show slight breakups, but appear closer to the
�ne grid solution (Figure 8(c)) as compared with the level set simulation of Yue et al. [19]
(Figure 8(d)) which was calculated on a 200× 200 �ne mesh.
For the purpose of evaluating the errors of area preservation and the accuracy of interface

advection and deformation, the velocity �eld expressed by Equation (36) is multiplied by
cos(�t=T ) and the stretching process is time-reversed according to Leveque [29], where T
is the prescribed reversal period. The �ow slows down and the �uid is stretched out dur-
ing 0¡t¡T=2. The �ow reverses direction and the �uid is shrunk back during T=2¡t¡T .
The �uid is expected to recover its initial circular shape at t=T . Two periods, T =250
and 500, are chosen for comparison. Figure 9 shows that the �uids calculated on all the
three meshes recover the circular shape without any signi�cant deformation after a period of
T =250 and 500. To quantitatively assess the accuracy of the present LSM, the area errors
are calculated. Table II indicates that the area errors of the present LSM are much smaller
than those of Yue et al. [19]. This test concludes that the current scheme can resolve the
stretched interface on the scale of mesh size without bringing any signi�cant distortion.
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Figure 9. Reversed circular �uid elements after one period T =: (a) 250; and (b) 500. Dotted lines,
initial contour of the circular �uid; solid lines, uniform 200× 200 mesh; dashed lines, uniform 100× 100

mesh; dash-dot lines, triangular mesh (11 421 points, 22 440 elements).

Table II. Area error after one period for a circular �uid in the time-reversed swirling deformation �ow.

Mesh Area error (T =250) (%) Area error (T =500) (%)

Uniform mesh (100× 100) [19] 0.687 0.09
Uniform mesh (100× 100) (This study) −0.0478 −0.0349
Non-uniform mesh (100× 100) [19] 0.42 −1.635
Uniform mesh (200× 200) [19] 0.038 1.36
Uniform mesh (200× 200) (This study) −0.0263 −0.0213
Triangular mesh
(11 421 points, 22 440 elements) (This study) −0.0410 −0.0262

5.3. Benchmark tests of the coupled system

5.3.1. Travelling of a solitary wave. Propagation of a solitary wave is a simple and practical
free surface problem, which has been extensively studied experimentally and numerically. Here
we aim to examine whether the coupled system can predict the viscous damping characteristics
and run-up on a vertical wall of a travelling solitary wave in a channel shown in Figure 10. Let
h denote the depth of still water, and the subscripts a and w denote air and water, respectively.
The channel size is 20h× 2h. The theoretical wave speed Cw =

√
gh is set to 1:0 m=s, the

Reynolds number Re=Cwh=�w =5× 104, the viscosity ratio �a=�w =15 and the density ratio
�a=�w =1:2× 10−3. A mesh of 400× 59 rectangular elements is used. The mesh sizes are
uniform in the x-direction and also uniform within the range (−0:1; 0:5) in the y-direction,
then expands to the top and bottom boundaries. The half thickness of interface in Equation
(2) is �xed with three mesh size 3(�y)min. The Courant number Cr=Cw�t=(�y)min is set
to 1.
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Figure 10. Schematic of the formation, travelling and run-up of a solitary wave in an enclosed channel.
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Figure 11. Travelling trains of a solitary wave at selected times.

To generate a solitary wave, one can make use of Laitone’s analytical approximation [30].
Here we release an initially still water surface with a Boussinesq pro�le [31] from the left
vertical wall which is in hydrostatic balance

A(x; 0)=A0= cosh
2
(√

3A0
2

x
)

(37)

After t=6 s, the wave is assumed to be free from the in�uence of the left wall boundary
and can be considered as a solitary wave. The time is then reset as the initial time (t=0)
of the solitary wave propagation. Because of the large density ratio of air and water, the top
boundary condition has negligible e�ects on the motion of the solitary wave, thus no-slip
boundary condition is applied there. As for the boundary condition for the level set function
� at the wall, we adopt the gradient free condition @�=@n=∇� · n=0, where n is the nor-
mal vector of the wall boundary. Figure 11 shows the travelling train of the solitary wave
and its run-up on the right vertical wall for the case A0=h=0:4. To quantitatively assess the
accuracy of the current coupled system, nine cases of wave run-ups (run-up is de�ned as the
highest point at the right vertical wall) with di�erent initial wave amplitudes are calculated.
The computational results are compared with the experimental data by Chan et al. [32] and
the numerical result of Yue et al. [19] in Figure 12. The Ac in the x-axis of Figure 12 is the
amplitude of the solitary wave in the middle of the horizontal distance of the computational
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Figure 12. Wave run-up height versus incident wave amplitude.

domain as shown in Figure 10. The agreement between computation and experiment is excel-
lent within Ac=h¡0:3. After the value Ac=h=0:3, the experimental data exhibit some scatter.
Overall the above results demonstrate that the present coupled system can accurately pre-
dict the viscous damping characteristics without introducing undesirable numerical damping
e�ects.

5.3.2. 2D broken dam problem. The collapse of a water column on a rigid horizontal plane
is called a broken dam problem. It is used to simulate the abrupt failure of a dam, in which
an initially blocked still water column spreads out immediately after the blocking is removed.
It has been experimentally studied in detail by Martin and Moyce [33] to investigate the
spreading velocity and the falling rate of water columns. The motion of the water was recorded
by cine-photography at about 300 frames per second in their experiments. One of their cases,
a square water column with length a=214 inch, is examined here to validate the present
model. This problem has also been studied numerically by many researchers, e.g. Kelecy and
Pletcher [34].
The computational domain is 5a× 1:25a as sketched in Figure 13, being the same as the

one employed by Kelecy and Pletcher. Here s and h denote the surge front position and the
remaining height of the water column, respectively; they are used to measure the spreading
velocity and the falling rate of the water column. The numerical experiments are conducted
in a closed container with all wall boundaries on two types of meshes: a uniform mesh of
2500 rectangular elements and a mesh of 5608 triangular elements (Figure 14). The still water
column is initially in hydrostatic balance. The time is non-dimensionalized by tg =

√
a=g in

all the plots.
Figure 15 shows the comparison of the surge fronts between our computations and Mar-

tin and Moyce’s experiment. Overall the present model predicts the water spreading ve-
locity very well. Figure 16 shows the comparison of the remaining water column height
between computation and experiment. They are also in good agreement regardless of
meshes.
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Figure 14. Meshes used in the 2D broken dam simulation: (a) rectangular mesh
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5.3.3. 3D broken dam problem. For a more realistic simulation of free surface �ow, 3D
broken dam problem is tested by the present model. The cubic water column is used for the
initial condition (Figure 17). The size of the computational domain is 5a× a× 1:25a (with
a=214 inch) in the x, y, and z directions, respectively. A total of 200× 40× 50 hexahedral
(brick) uniform elements are used for the simulation. All the boundaries are treated as walls.
Figure 18 shows the evolution of free surface and corresponding velocity vector plots. Figures
19 and 20 display the front surge and the remaining height location at the bottom and left
wall, respectively. All the variables are non-dimensionalized as in the case of 2D broken dam
problem. The results are again in good agreement with the experimental data of Martin and
Moyce [33].

5.3.4. 3D broken dam with a square column. The problem of a broken dam over a square
column is of practical importance in terms of functional and structural design of hydraulic
structures. Figure 21 is a schematic description of the problem. Recently, G	omez-Gesteira and
Dalrymple [35] applied the smoothed particle hydrodynamics method to study this problem.
As an initial condition the �oor is assumed to be covered by a thin layer (1 cm) of water
to be consistent with the physical experiment [35]. Only half of the entire domain is needed
for simulation owing to the geometric symmetry of the problem. A total of 181 905 nodes
and 169 752 hexahedral elements are employed. Figure 22 displays a time sequence of free
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Figure 18. Free surface con�guration and velocity vectors in the centre plane of
the container at selected (non-dimensionalized) times: (a) t=0:000; (b) t=1:481;

(c) t=1:788; (d) t=2:369; (e) t=2:950; and (f) t=3:122.
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Figure 21. Schematic description of a 3D broken dam over a column.

surface deformation. For a quantitative assessment of the solution, the x velocity component
taken at 0:146m upstream of the centre of the column and 0:026m o� the �oor and the force
exerted on the column are compared with the experimental data [36]. The force acting on the
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Figure 22. Free surface evolution of a broken dam over a column: (a) t=0:000 s; (b)
t=0:092 s; (c) t=0:213 s; (d) t=0:332 s; (e) t=0:430 s; (f) t=0:736 s; (g) t=1:006 s;

(h) t=1:230 s; (i) t=1:983 s; and (j) t=2:341 s.

column is calculated by integrating the pressure �eld on the surface of column. The force in
the positive x direction is assumed positive. Figure 23 shows quite reasonable agreement with
the experimental data given the complexity of the free surface deformation.
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Figure 23. Comparison of numerical results with experimental data: (a) the x velocity component at a
selected point in front of the column; and (b) the force acting on the column by collapsing water.

6. CONCLUSIONS

This paper presents a two-phase �ow model that couples the incompressible Navier–Stokes
solver with the level set method in the �nite element framework to achieve maximum grid
�exibility. Di�erent from other methods, the current model is based on the fractional four-
step method and the implicit characteristic Galerkin approximation without resorting to ENO
schemes. The fractional four-step method is superior to other fractional step methods or
SIMPLE-type algorithm because of easy implementation of the boundary condition for in-
termediate velocity. The accuracy of the Navier–Stokes solver is con�rmed by the vortex
decay test. The discretization schemes for the level set evolution and reinitialization equations
are described. They are subsequently veri�ed with the benchmark cases, including the reini-
tialization of a circle on two meshes, Zalesak’s problem and the stretching of a circular �uid
element in a swirling deformation velocity �eld.
The coupled system is �nally applied to the benchmark cases of 2D solitary waves, and 2D

and 3D broken dam problems without and with a square column. The computational results
of these cases are in good agreement with the other existing experimental and numerical
results.
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